Vespa Product Updates, September 2019: Tensor Float Support, Reduced Memory Use for Text Attributes, Prometheus Monitoring Support, and Query Dispatch Integrated in Container

Kristian Aune

Kristian Aune

Head of Customer Success, Vespa


In the August Vespa product update, we mentioned BM25 Rank Feature, Searchable Parent References, Tensor Summary Features, and Metrics Export. Largely developed by Yahoo engineers, Vespa is an open source big data processing and serving engine. It’s in use by many products, such as Yahoo News, Yahoo Sports, Yahoo Finance, and the Verizon Media Ad Platform. Thanks to feedback and contributions from the community, Vespa continues to grow.

This month, we’re excited to share the following updates with you:

Tensor Float Support

Tensors now supports float cell values, for example tensor<float>(key{}, x[100]). Using the 32 bits float type cuts memory footprint in half compared to the 64 bits double, and can increase ranking performance up to 30%. Vespa’s TensorFlow and ONNX integration now converts to float tensors for higher performance. Read more.

Reduced Memory Use for Text Attributes 

Attributes in Vespa are fields stored in columnar form in memory for access during ranking and grouping. From Vespa 7.102, the enum store used to hold attribute data uses a set of smaller buffers instead of one large. This typically cuts static memory usage by 5%, but more importantly reduces peak memory usage (during background compaction) by 30%.

Prometheus Monitoring Support

Integrating with the Prometheus open-source monitoring solution is now easy to do
using the new interface to Vespa metrics.
Read more.

Query Dispatch Integrated in Container

The Vespa query flow is optimized for multi-phase evaluation over a large set of search nodes. Since Vespa-7-109.10, the dispatch function is integrated into the Vespa Container process which simplifies the architecture with one less service to manage. Read more.

We welcome your contributions and feedback (tweet or email) about any of these new features or future improvements you’d like to request.

Vespa Product Updates, October/November 2019: Nearest Neighbor and Tensor Ranking, Optimized JSON Tensor Feed Format, Matched Elements in Complex Multi-value Fields, Large Weighted Set Update Performance, and Datadog Monitoring Support

Kristian Aune

Kristian Aune

Head of Customer Success, Vespa


In the September Vespa product update, we mentioned Tensor Float Support, Reduced Memory Use for Text Attributes, Prometheus Monitoring Support, and Query Dispatch Integrated in Container.

This month, we’re excited to share the following updates:

Nearest Neighbor and Tensor Ranking

Tensors are native to Vespa. We compared elastic.co to vespa.ai testing nearest neighbor ranking using dense tensor dot product. The result of an out-of-the-box configuration demonstrated that Vespa performed 5 times faster than Elastic. View the test results.

Optimized JSON Tensor Feed Format

A tensor is a data type used for advanced ranking and recommendation use cases in Vespa. This month, we released an optimized tensor format, enabling a more than 10x improvement in feed rate. Read more.

Matched Elements in Complex Multi-value Fields 

Vespa is used in many use cases with structured data – documents can have arrays of structs or maps. Such arrays and maps can grow large, and often only the entries matching the query are relevant. You can now use the recently released matched-elements-only setting to return matches only. This increases performance and simplifies front-end code.

Large Weighted Set Update Performance

Weighted sets in documents are used to store a large number of elements used in ranking. Such sets are often updated at high volume, in real-time, enabling online big data serving. Vespa-7.129 includes a performance optimization for updating large sets. E.g. a set with 10K elements, without fast-search, is 86.5% faster to update.

Datadog Monitoring Support

Vespa is often used in large scale mission-critical applications. For easy integration into dashboards,
Vespa is now in Datadog’s integrations-extras GitHub repository.
Existing Datadog users will now find it easy to monitor Vespa.
Read more.

About Vespa: Largely developed by Yahoo engineers, Vespa is an open source big data processing and serving engine. It’s in use by many products, such as Yahoo News, Yahoo Sports, Yahoo Finance, and the Verizon Media Ad Platform. Thanks to feedback and contributions from the community, Vespa continues to grow.

We welcome your contributions and feedback (tweet or email) about any of these new features or future improvements you’d like to request.